Calculating both S waves in weakly anisotropic structures using coupling ray theory along a single ray

Petr Bulant & Luděk Klimeš Charles University in Prague, Department of Geophysics, Faculty of Mathematics and Physics, Prague, Czech Republic, Europe

Consortium "Seismic Waves in Complex 3-D Structures" (http://sw3d.cz).

Coupling and splitting of S waves in an anisotropic medium

Isotropic ray theory Anisotropic ray theory Coupling ray theory

Seismic Waves in Complex 3-D Structures

http://sw3d.cz

Isotropic ray theory

- assumes equal velocities of both S waves => 1 S wave ray
- S-wave polarization vectors do not rotate about the ray
- applicable to isotropic and very weakly anisotropic media
- Anisotropic ray theory
- Coupling ray theory

Seismic Waves in Complex 3-D Structures

http://sw3d.cz

Isotropic ray theory

- assumes equal velocities of both S waves => one S wave ray
- S-wave polarization vectors do not rotate about the ray
- applicable to isotropic and very weakly anisotropic media

Anisotropic ray theory

- assumes both S waves strictly decoupled => two S1 and S2 rays
- S-wave polarization vectors coincide with the eigenvectors of the Christoffel matrix and may rotate rapidly about the ray
- always applicable to P waves
- applicable to S waves in strongly anisotropic media
- Coupling ray theory

Isotropic ray theory

Anisotropic ray theory

Coupling ray theory (Coates & Chapman 1990)

- coupled frequency-dependent S waves calculated along one reference ray
- S-wave polarization vectors tend to remain unrotated about the ray, but are partially attracted by the rotation of the eigenvectors of the Christoffel matrix
- applicable to isotropy and to all degrees of anisotropy
- low-frequency limit: Isotropic ray theory
- high-frequency limit: Anisotropic ray theory

Seismic Waves in Complex 3-D Structures http://sw3d.cz

S-wave polarization vector along a ray:

Seismic Waves in Complex 3-D Structures ht

http://sw3d.cz

Numerical example

Synthetic seismograms calculated by the three methods in vertically heterogeneous 1-D models of different degrees of anisotropy.

Seismic Waves in Complex 3-D Structures ht

http://sw3d.cz

Vertically heterogeneous 1-D anisotropic models

ELSMIC WAVES IN COMPLEX 5 D

Seismic Waves in Complex 3-D Structures http://sw3d.cz

Vertically heterogeneous 1-D anisotropic models

S-wave anisotropy: 0% 1.7% 3.4% 6.7% 13.1%

Seismic Waves in Complex 3-D Structures http://sw3d.cz

Isotropic ray theory seismograms in model QIH (calculated in QI0)

Anisotropic ray theory seismograms in model QIH

Coupling ray theory seismograms in model QIH

radial

transverse

Seismograms in model QIH transverse component

Isotropic

Anisotropic

Coupling ray theory seismograms, transverse component

Coupling ray theory seismograms, transverse component

rotation of polarization

Coupling ray theory seismograms, transverse component

rotation of polarization

shear-wave splitting

 For weakly anisotropic structures and moderate frequencies, both isotropic and anisotropic ray theories fail, coupling ray theory should be used

- For weakly anisotropic structures and moderate frequencies, both isotropic and anisotropic ray theories fail, coupling ray theory should be used
- Coupling ray theory is easy to apply

- For weakly anisotropic structures and moderate frequencies, both isotropic and anisotropic ray theories fail, coupling ray theory should be used
- Coupling ray theory is easy to apply
- For both S waves, only one common reference ray is needed (lower computational costs, no problems with S-wave singularities)

- For weakly anisotropic structures and moderate frequencies, both isotropic and anisotropic ray theories fail, coupling ray theory should be used
- Coupling ray theory is easy to apply
- For both S waves, only one common reference ray is needed (lower computational costs, no problems with S-wave singularities)
- Coupling ray theory may be derived from coupling ray series similarly as standard anisotropic ray theory from standard ray series

Acknowledgements

The research has been supported by the

- Grant Agency of the Czech Republic Contract P210/10/0736
- Ministry of Education of the Czech Republic within research project MSM0021620860
- Consortium "Seismic Waves in Complex 3-D Structures"

(http://sw3d.cz)