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Lud�ek Klime�s

We study how the perturbations of a generally heterogeneousisotropic
or anisotropic structure manifest themselves in the wave �eld, and which
perturbations can be detected within a limited aperture and a limited
frequency band.

This study represents a generalization of the narrow-band Gaussian sen-
sitivity packets (Klime�s, 2012) to the broad-band sensiti vity packets.

We shall concentrate especially on the di�erences between the Gaussian
sensitivity packets and the broad-band sensitivity packets.



Sensitivity of seismic waves to structure:
Wide-angle broad-band sensitivity packets

Lud�ek Klime�s

Outline

Gabor representation of medium perturbations
Applied approximations
Initial slowness vector of the Gaussian sensitivity beam
Inverse frequencies$ 0 for di�erent structural wavenumber vectors k�

i
Initial slowness vector of the broad-band sensitivity beam
Paraxial approximation of the sensitivity beam
Evolution equations of the sensitivity beam
Paraxial approximation of the sensitivity packet
Evolution equations of the sensitivity packet
Illustrations of the broad-band sensitivity packets
Conclusions
References (online at \http://sw3d.cz")
Acknowledgements



Gabor representation of medium perturbations

We assume a smoothly varying heterogeneous generally anisotropic elastic
background medium.

We consider arbitrarily heterogeneous in�nitesimally small perturbations
�c ijkl (x) and �%(x) of elastic moduli cijkl (x) and density %(x).

We decompose the perturbations into Gabor functionsg� (x) indexed here
by 
:

�c ijkl (x) =
X

�

c�
ijkl g� (x) ; �%(x) =

X

�

%� g� (x) ;

g� (x) = exp[i k � T (x � x � ) � 1
2 (x � x � )T K � (x � x � )] :

Gabor functions g� (x) are centred at various spatial positionsx � and
have various structural wavenumber vectorsk � .

The wave �eld scattered by the perturbations is then composed of waves
u�

i (x ; t) scattered by individual Gabor functions:

�u i (x ; t) =
X

�

u�
i (x ; t) :



Applied approximations

Short-duration broad-band wave �eld with a smooth frequency spectrum
incident at the Gabor function, expressed in terms of the amplitude and
travel time.

First-order Born approximation of each waveu�
i (x ; t) scattered by one

Gabor function.

Ray-theory approximation of the Green tensor in the Born approxima-
tion.

High-frequency approximation of spatial derivatives of both the incident
wave and the Green tensor. In this high-frequency approximation, we
neglect the derivatives of the amplitude, which are of order1/ frequency
with respect to the derivatives of the travel time.

Paraxial ray approximation of the incident wave in the vicinity of central
point x � of the Gabor function.

Two-point paraxial ray approximation of the Green tensor at point x �

and at the receiver. The paraxial ray approximation consists in a constant
amplitude and in the second-order Taylor expansion of the travel time.



Initial slowness vector of the Gaussian sensitivity beam

Inverse frequency:
$ = ! � 1 :

For each inverse frequency, the amplitude of the sensitivity beam depends
on the distance of point Pi + $ k �

i from the wavenumber surface.

Maximum amplitude of the sensitivity beam:

detf cijkl (x � )[Pj + $ 0k�
j ][Pl + $ 0k�

l ] � %(x � )� ik g = 0 :

For positive real{valued solutions $ 0, the initial slowness vector of the
reference ray is

p0
i = Pi + $ 0 k�

i :



Inverse frequencies $ 0

for di�erent structural wavenumber vectors k�
i
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Initial slowness vector of the broad-band sensitivity beam

For close positive real{valued solutions$ 01 and $ 02 or for close imagi-
nary solutions $ 01 and $ 02 with equal positive real parts:

$ 0 = 1
2 ($ 01 + $ 02) ;

p0
i = (1 � �p 0)� 1[Pi + $ 0 k�

i ] :

Standard second-order paraxial approximation of the slowness vector
leading to point x :

pi (x) � p0
i � � 00

;ji � x j :

Direction-dependent relative length correction slownessvector:

pi (x) ' p0
i � � 00

;mi � xm + p0
i [�p (� x) � �p 0] :



Paraxial approximation of the sensitivity beam in ray-cent red
coordinates

Paraxial approximation at frequency ! 0:

T �
! 0 (x) � T � + � 0 + d�

dq3
� x(q)

3 + 1
2 � x(q)

i M ij � x(q)
j

+� x(q)
K NK �p (� x ) + 1

2 N [�p (� x)]2 :

Frequency dependence of the paraxial approximation :

T �
! (x) � T �

! 0 (x) + � x(q)
K M K 4

� !
! + 1

2 M 44
�

� !
!

� 2
+ N4�p (� x ) � !

! :



Evolution equations of the sensitivity beam

M = PQ � 1 ;

M 4 = Q � 1T
M �

4 ;

M 44 = M �
44 � M �

4
T Q � 1Q2M �

4 ;

N = Q � 1T
N � ;

N = N � � N � T Q � 1Q2N � ;

N4 = N �
4 � M �

4
T Q � 1Q2N � :



Paraxial approximation of the sensitivity packet in ray-ce ntred
coordinates

T �
GP (x ; t) � T � + � 0 � t + d�

dq3
� x(q)

3 + 1
2 � x(q)

i MGP ij � x(q)
j

+� x(q)
i NGP i �p (� x )+ 1

2 NGP [�p (� x)]2

+
�
� x(q)

i MGP i 4+ NGP 4�p (� x )
�
(t � T � � � 0) + 1

2 MGP 44(t � T � � � 0)2 :



Evolution equations of the sensitivity packet

MGP KL = M KL � M K 4M L 4=M44 ;

MGP K 4 = M K 4=M44 ;

MGP 44 = � 1=M44 ;

MGP 34 = � MGP 44
d�
dq3

;

MGP i 3 = � MGP i 4
d�
dq3

+ M i 3 ;

Di�erence from Gaussian sensitivity packets:
M 44 may be small or zero at the initial point and at caustics.

NGP K = NK � M K 4N4=M44 ;

NGP = N � (N4)2=M44 ;

NGP 4 = N4=M44 ;

NGP 3 = � NGP 4
d�
dq3

:



Illustrations of the broad-band sensitivity packets
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Conclusions

Perturbations of elastic moduli and density can be decomposed into Ga-
bor functions.

A short-duration broad-band wave with a nearly constant frequency spec-
trum incident at each Gabor function generates at most 5 scattered sen-
sitivity packets.

We have generalized the theory of narrow-band Gaussian sensitivity pack-
ets by Klime�s (2012) to wide-angle broad-band sensitivity packets.

The derived correspondence between the perturbations of the structure
and the recorded wave�eld may play a decisive role in understanding the
information on geological structures carried by seismic wave�elds, in un-
derstanding the physical meaning of velocity models, and ininterpreting
seismic data from forward to wide{angle scattering. It may help us in
designing the optimum target{oriented re
ection measurement con�gu-
ration, see Klime�s (2010).
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