Weak-anisotropy moveout approximations for P waves in homogeneous TTI layers

Ivan Pšenčík¹⁾ and Véronique Farra²⁾

Institute of Geophysics, Acad. Sci., Praha, Czech Republic
Institut de Physique du Globe, Paris, France

SW3D meeting

June 6-7, 2016

Outline

Introduction

Weak-anisotropy parameters

Approximate traveltime formulae

NMO velocity, quartic coefficient

Tests of formulae

Conclusions

Possible extensions

Introduction

Moveout approximations

standard

- expansion of T^2 in terms of the squared offset

hyperbolic, non-hyperbolic, ...

alternative

- expansion of T^2 in terms of the deviations

of anisotropy from isotropy;

weak anisotropy (WA) parameters

Introduction

Moveout approximations with WA parameters

- reflected P and SV waves in VTI media (Report 23)

reflected P waves in upto monoclinic media
with a plane of symmetry coinciding with the reflector (Report 24)

- reflected P waves in anisotropy of arbitrary symmetry (triclinic, but also tilted TI or ORT)

- 21 weak-anisotropy (WA) parameters
- generalization of *Thomsen's* (1986) parameters
- an alternative to stiffness tensor $C_{\alpha\beta}$ or $A_{\alpha\beta}$
- applicable to anisotropy of any type, strength and orientation
- describe exactly any wave attribute
- linear relation of WA to $C_{\alpha\beta}$ or $A_{\alpha\beta}$ parameters
- natural combinations of $C_{\alpha\beta}$ or $A_{\alpha\beta}$ taken into account

- simple transformation from one coordinate system to another
- represent deviation from an isotropic reference
- freedom in the choice of the reference velocity
- specified in coordinate systems independent of symmetry elements of studied anisotropy symmetry
- all 21 WA parameters dimensionless, of comparable size
- first-order P-wave attributes depend on only 15 WA parameters

P-wave WA parameters (global coordinates)

$$\epsilon_x = \frac{A_{11} - \alpha^2}{2\alpha^2}, \quad \epsilon_y = \frac{A_{22} - \alpha^2}{2\alpha^2}, \quad \epsilon_z = \frac{A_{33} - \alpha^2}{2\alpha^2}$$

$$\delta_x = \frac{A_{23} + 2A_{44} - \alpha^2}{\alpha^2}, \quad \delta_y = \frac{A_{13} + 2A_{55} - \alpha^2}{\alpha^2}, \quad \delta_z = \frac{A_{12} + 2A_{66} - \alpha^2}{\alpha^2}$$

$$\chi_x = \frac{A_{14} + 2A_{56}}{\alpha^2}$$
, $\chi_y = \frac{A_{25} + 2A_{46}}{\alpha^2}$, $\chi_z = \frac{A_{36} + 2A_{45}}{\alpha^2}$

$$\epsilon_{15} = \frac{A_{15}}{\alpha^2} , \quad \epsilon_{16} = \frac{A_{16}}{\alpha^2} , \quad \epsilon_{24} = \frac{A_{24}}{\alpha^2} , \quad \epsilon_{26} = \frac{A_{26}}{\alpha^2} , \quad \epsilon_{34} = \frac{A_{34}}{\alpha^2} , \quad \epsilon_{35} = \frac{A_{35}}{\alpha^2}$$

 α - P-wave velocity in a reference isotropic medium

Transformation relations: $\mathbf{TI} \rightarrow \mathbf{TTI}$

$$\begin{split} \epsilon_{x} &= \epsilon_{x}^{TI}(t_{2}^{2} + t_{3}^{2})^{2} + \epsilon_{z}^{TI}t_{1}^{4} + \delta_{y}^{TI}t_{1}^{2}(t_{2}^{2} + t_{3}^{2}) \\ \epsilon_{z} &= \epsilon_{x}^{TI}(t_{1}^{2} + t_{2}^{2})^{2} + \epsilon_{z}^{TI}t_{3}^{4} + \delta_{y}^{TI}t_{3}^{2}(t_{1}^{2} + t_{2}^{2}) \\ \delta_{y} &= 2\epsilon_{x}^{TI}(3t_{1}^{2}t_{3}^{2} + t_{2}^{2}) + 6\epsilon_{z}^{TI}t_{1}^{2}t_{3}^{2} + \delta_{y}^{TI}[(t_{2}^{2} + t_{3}^{2})t_{3}^{2} + t_{1}^{2}(t_{1}^{2} + t_{2}^{2}) - 4t_{1}^{2}t_{3}^{2}] \\ \epsilon_{x}^{TI}, \ \epsilon_{z}^{TI}, \ \delta_{y}^{TI} - \text{WA parameters in "crystal" coordinates} \\ \epsilon_{x}, \ \epsilon_{z}, \ \delta_{y} - \text{WA parameters in global coordinates} \\ t_{i} - \text{components in global coordinates of a unit vector t} \end{split}$$

 $\ensuremath{\mathbf{t}}$ - vector parallel to the axis of symmetry

Reflection traveltime along a reference ray

 $T^{2}(x) = (T_{d}(x) + T_{u}(x))^{2}$ $T^{2}_{d}(x) = \frac{1}{4}(4H^{2} + x^{2})/v^{2}(\mathbf{N}^{d}) \qquad T^{2}_{u}(x) = \frac{1}{4}(4H^{2} + x^{2})/v^{2}(\mathbf{N}^{u})$

reference ray - a symmetric ray in a reference isotropic medium

 \boldsymbol{x} - offset, source-receiver distance

T(x) - traveltime at the offset x

 ${\cal H}$ - depth of the plane horizontal reflector

Reflection traveltime along a reference ray

 $T^{2}(x) = (T_{d}(x) + T_{u}(x))^{2}$ $T^{2}_{d}(x) = \frac{1}{4}(4H^{2} + x^{2})/v^{2}(\mathbf{N}^{d}) \qquad T^{2}_{u}(x) = \frac{1}{4}(4H^{2} + x^{2})/v^{2}(\mathbf{N}^{u})$

 $T_d(x)$, $T_u(x)$ - traveltimes along down- and up-going legs of the reference ray

\mathbf{N}^{d} , \mathbf{N}^{u} - ray vectors, unit vectors

parallel to the down- and up-going legs of the reference ray

 $v(\mathbf{N})$ - approximate ray velocity along the reference ray direction N; $v(\mathbf{N})$ different on down- and up-going legs of the ray

Normalized reflection moveout formula

$$\bar{x} = x/2H$$
, $T_0 = 2H/\alpha$

 $T^2(\bar{x}) = (T_d(\bar{x}) + T_u(\bar{x}))^2$

 $T_d^2(\bar{x}) = \frac{1}{4}T_0^2\alpha^2(1+\bar{x}^2)/v^2(\mathbf{N}^d) \qquad T_u^2(\bar{x}) = \frac{1}{4}T_0^2\alpha^2(1+\bar{x}^2)/v^2(\mathbf{N}^u)$

 T_0 - two-way zero-offset traveltime in the reference isotropic medium

 $\bar{\boldsymbol{x}}$ - normalized offset

 α - reference velocity

 $v(\mathbf{N})$ - approximate ray velocity along the reference ray direction \mathbf{N}

Problem: We seek: $v^2(\mathbf{N})$

We have available: N and $\widetilde{c^{-1}}(\mathbf{N})$ or $\widetilde{c^2}(\mathbf{N})$

 $\widetilde{c^{-1}}(\mathbf{N})$ - first-order approximation of phase slowness

 $\widetilde{c^2}(\mathbf{N})$ - first-order approximation of square of phase velocity

 $v(\mathbf{N})$ - ray velocity

 ${\bf N}$ - ray vector

Assumption: I) $v^{-1}(\mathbf{N}) \sim \widetilde{c^{-1}}(\mathbf{N})$ II) $v^2(\mathbf{N}) \sim \widetilde{c^2}(\mathbf{N})$

Ray-velocity approximations in the plane (x_1, x_3) ray vector $\mathbf{N} \equiv (N_1, 0, N_3)$

I) $v^{-1}(\mathbf{N}) \sim \alpha^{-1} [1 - (\epsilon_x N_1^4 + \delta_y N_1^2 N_3^2 + \epsilon_z N_3^4) - 2(\epsilon_{15} N_1^3 N_3 + \epsilon_{35} N_1 N_3^3)]$

dependent of the choice of $\boldsymbol{\alpha}$

II) $v^2(\mathbf{N}) \sim \alpha^2 [1 + 2(\epsilon_x N_1^4 + \delta_y N_1^2 N_3^2 + \epsilon_z N_3^4) + 4(\epsilon_{15} N_1^3 N_3 + \epsilon_{35} N_1 N_3^3)]$

independent of the choice of $\boldsymbol{\alpha}$

I)
$$T^2(\bar{x}) = T_0^2 \frac{2(1+\bar{x}^2)^2 - P(\bar{x})}{1+\bar{x}^2}$$
 dependent of α

$$P(\bar{x}) = (1 + \bar{x}^2)^2 + 2\epsilon_x \bar{x}^4 + 2\delta_y \bar{x}^2 + 2\epsilon_z$$
 (Report 24)

Zero offset ($\bar{x} = 0$)

$$T^2(0) = 4H^2(2\alpha^2 - A_{33})/\alpha^4$$

 $\alpha^2 = A_{33} \Rightarrow \epsilon_z = 0$, $T^2(0) = 4H^2/A_{33}$

 A_{33} - first-order approximation of c_v^2 c_v - vertical P-wave phase velocity

II) $T^2(\bar{x}) = \frac{1}{4}T_0^2(1+\bar{x}^2)^3 [P_d^{-1/2}(\bar{x}) + P_u^{-1/2}(\bar{x})]^2$ independent of α

$$P_d(\bar{x}) = (1 + \bar{x}^2)^2 + 2\epsilon_x \bar{x}^4 + 4\epsilon_{15} \bar{x}^3 + 2\delta_y \bar{x}^2 + 4\epsilon_{35} \bar{x} + 2\epsilon_z$$
$$P_u(\bar{x}) = (1 + \bar{x}^2)^2 + 2\epsilon_x \bar{x}^4 - 4\epsilon_{15} \bar{x}^3 + 2\delta_y \bar{x}^2 - 4\epsilon_{35} \bar{x} + 2\epsilon_z$$

 $P_d(\bar{x}) \sim P_u(\bar{x}) \sim P(\bar{x})$

II)
$$T^2(\bar{x}) = \frac{1}{4}T_0^2(1+\bar{x}^2)^3 [P_d^{-1/2}(\bar{x}) + P_u^{-1/2}(\bar{x})]^2$$
 independent of α

$$P_d(\bar{x}) = (1 + \bar{x}^2)^2 + 2\epsilon_x \bar{x}^4 + 4\epsilon_{15} \bar{x}^3 + 2\delta_y \bar{x}^2 + 4\epsilon_{35} \bar{x} + 2\epsilon_z$$
$$P_u(\bar{x}) = (1 + \bar{x}^2)^2 + 2\epsilon_x \bar{x}^4 - 4\epsilon_{15} \bar{x}^3 + 2\delta_y \bar{x}^2 - 4\epsilon_{35} \bar{x} + 2\epsilon_z$$

$$P_d(\bar{x}) \sim P_u(\bar{x}) \sim P(\bar{x})$$

III)
$$T^2(\bar{x}) = T_0^2 (1 + \bar{x}^2)^3 / P(\bar{x})$$
 (Report 24)

$$P(\bar{x}) = (1 + \bar{x}^2)^2 + 2\epsilon_x \bar{x}^4 + 2\delta_y \bar{x}^2 + 2\epsilon_z$$

Zero offset $(\bar{x} = 0)$: $T^2(0) = 4H^2/A_{33}$

Transformation relations: $\mathbf{TI} \rightarrow \mathbf{TTI}$

$$\begin{aligned} \epsilon_x &= \epsilon_x^{TI} (t_2^2 + t_3^2)^2 + \epsilon_z^{TI} t_1^4 + \delta_y^{TI} t_1^2 (t_2^2 + t_3^2) \\ \epsilon_z &= \epsilon_x^{TI} (t_1^2 + t_2^2)^2 + \epsilon_z^{TI} t_3^4 + \delta_y^{TI} t_3^2 (t_1^2 + t_2^2) \\ \delta_y &= 2 \epsilon_x^{TI} (3 t_1^2 t_3^2 + t_2^2) + 6 \epsilon_z^{TI} t_1^2 t_3^2 + \delta_y^{TI} [(t_2^2 + t_3^2) t_3^2 + t_1^2 (t_1^2 + t_2^2) - 4 t_1^2 t_3^2] \\ \epsilon_x^{TI}, \ \epsilon_z^{TI}, \ \delta_y^{TI} - \text{WA parameters in "crystal" coordinates} \\ \epsilon_x, \ \epsilon_z, \ \delta_y - \text{WA parameters in global coordinates} \end{aligned}$$

 $\ensuremath{\mathbf{t}}$ - vector parallel to the axis of symmetry

NMO velocity, quartic coefficient

III) Formulae independent of the choice of α

For $\alpha^2 = A_{33} \Leftrightarrow \epsilon_z = 0$

NMO velocity

$$v_{NMO}^{-2} = \alpha^{-2} (1 - 2\delta_y)$$

Quartic coefficient

$$A_4 = 2[\delta_y - \epsilon_x + 2(\delta_y)^2] / (\alpha^4 T_0^2)$$

Tests of formulae

Greenhorn shale; anisotropy $\sim 26\%$

 α =3.094 km/s, ϵ_x^{TI} =0.256, δ_y^{TI} =-0.0523, ϵ_z^{TI} =0, $\Phi = 45^{\circ}$

Tests of formulae

Greenhorn shale; anisotropy $\sim 26\%$

 ϵ_x^{TI} =0.256, δ_y^{TI} =-0.0523, ϵ_z^{TI} =0, $\Phi = 0^{\circ}$, (α =3.094 km/s)

Tests of formulae

Greenhorn shale; anisotropy $\sim 26\%$

 ϵ_x^{TI} =0.256, δ_y^{TI} =-0.0523, ϵ_z^{TI} =0, $\Phi = 45^{\circ}$, (α =3.094 km/s)

Conclusions

- based on WA approximation
- weak or moderate anisotropy of arbitrary symmetry and orientation
- relatively simple formulae
- no non-physical assumptions (no acoustic approximation)
- reduced number of parameters
- simple transformation from one coordinate system to another

Conclusions

- insight

- accuracy for small offsets within the order of used approximation
- accuracy for large offsets within the order of used approximation
- inaccuracies for large deviations of ${\bf n}$ and ${\bf N},$
- for higher-symmetry media reduction to previous formulae

Possible extensions

- tilted orthorhombic or monoclinic media
- an inclined reflector
- unconverted separate or coupled S waves
- layered media

Acknowledgement

Research project 16-05237S of the Grant Agency of the CR