# Smoothing the optimum initial parameters of Gaussian beams # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Deleting old files del.pl: "r0m1.out" del.pl: "y0m1.out" del.pl: "r0mnew.out" del.pl: "y0mnew.out" del.pl: "ry2.out" # Grid dimensions N1=26 N2=48 N3=36 D1=1. D2=1. D3=1. O1=1. O2=1. O3=1. # Smoothing the parameter R0S - 1st iteration # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # CAL='gb-ry.cal' GRD1='r0s.out' GRD2='y0s.out' GRD3='ry2r.out' grdcal: CAL='div.cal' GRD1='r0s.out' GRD2='ry2r.out' GRD3='r0s1.out' grdcal: CAL='div.cal' GRD1='y0s.out' GRD2='ry2r.out' GRD3='y0s1.out' grdcal: CAL='gb-s.cal' GRD1='sigmar.out' GRD2='y0s.out' GRD3='ry2r.out' GRD4='sigmar1.out' grdcal: # Initial and updated models MODEL='mgb-m0.dat' MODOUT='r0mod.out' NEGPAR=1 # Calculating matrices for inversion (minimizing first derivatives) M1='m1.out' M2='m2.out' MODL2=' ' MODSOB='modsob.out' SOBOLEV='gb-sob11.dat' SOBW01=1 invsoft: # Unit given standard deviation: ERRMUL=SQRT(N1*N2*N3) CAL='gb-tau.cal' GRD1='tau.out' GRD2='tauint.out' DTAU=0.200 # DTAU is 2xSTORE grdcal: GRD='r0s1.out' KOLUMN=4 GRD1='sigmar1.out' KOLUMN1=5 GRD2='tauint.out' KOLUMN2=1 PTS='r0pts.out' grdpts: GRD=' ' KOLUMN=4 KOLERR=5 INDFUN=1 MPAR=1 POWERM=1 ERRMUL=211.962 GM1='gm1.out' GM2='gm2.out' GM3=' ' DM1='dm1.out' invpts: # Matrix operations MATIN1='dm1.out' MATOUT='dm2.out' MATFUN='inv' matfun: MATIN1='dm2.out' MATIN2='gm1.out' MATOUT='dm2gm1.out' SYMMETRY= MATT1= MATT2=1 matmul: MATIN1='gm1.out' MATIN2='dm2gm1.out' MATOUT='sm1.out' SYMMETRY='sym' MATT1= MATT2= matmul: MATIN1='sm1.out' MATIN2='modsob.out' MATOUT='sm2.out' #COEF1=1. COEF2=400. # range of Im(N0) approximately one order #COEF1=1. COEF2=2.3 # range of Im(N0) approximately two orders matlin: MATIN1='sm2.out' MATOUT='sm3.out' matinv: MATIN1='dm2.out' MATIN2='gm2.out' MATOUT='gm3.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='gm1.out' MATIN2='gm3.out' MATOUT='gm4.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='sm3.out' MATIN2='gm4.out' MATOUT='gm5.out' SYMMETRY=' ' MATT1= MATT2= matmul: # Updating the model M1='m1.out' MODNEW='gm5.out' modmod: # # Calculating gridded values of the parameter R0S MODEL='r0mod.out' MPAR=1 ICB=' ' VEL='r0m1.out' grid: # Smoothing the parameter Y0S - 1st iteration # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Data to be fit CAL='gb-yd.cal' GRD1='y0s1.out' GRD2='r0m1.out' GRD3='r0s1.out' GRD4='y0d1.out' grdcal: # Initial and updated models MODEL='mgb-m0.dat' MODOUT='y0mod.out' NEGPAR=1 # Calculating matrices for inversion (minimizing first derivatives) M1='m1.out' M2='m2.out' MODL2=' ' MODSOB='modsob.out' SOBOLEV='gb-sob11.dat' SOBW01=1 invsoft: # Unit given standard deviation: ERRMUL=SQRT(N1*N2*N3) CAL='gb-tau.cal' GRD1='tau.out' GRD2='tauint.out' DTAU=0.200 # DTAU is 2xSTORE grdcal: GRD='y0d1.out' KOLUMN=4 GRD1='sigmar1.out' KOLUMN1=5 GRD2='tauint.out' KOLUMN2=1 PTS='y0pts.out' grdpts: GRD=' ' KOLUMN=4 KOLERR=5 INDFUN=1 MPAR=1 POWERM=1 ERRMUL=211.962 GM1='gm1.out' GM2='gm2.out' GM3=' ' DM1='dm1.out' invpts: # Matrix operations MATIN1='dm1.out' MATOUT='dm2.out' MATFUN='inv' matfun: MATIN1='dm2.out' MATIN2='gm1.out' MATOUT='dm2gm1.out' SYMMETRY= MATT1= MATT2=1 matmul: MATIN1='gm1.out' MATIN2='dm2gm1.out' MATOUT='sm1.out' SYMMETRY='sym' MATT1= MATT2= matmul: MATIN1='sm1.out' MATIN2='modsob.out' MATOUT='sm2.out' #COEF1=1. COEF2=400. # range of Im(N0) approximately one order #COEF1=1. COEF2=41. # range of Im(N0) approximately two orders matlin: MATIN1='sm2.out' MATOUT='sm3.out' matinv: MATIN1='dm2.out' MATIN2='gm2.out' MATOUT='gm3.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='gm1.out' MATIN2='gm3.out' MATOUT='gm4.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='sm3.out' MATIN2='gm4.out' MATOUT='gm5.out' SYMMETRY=' ' MATT1= MATT2= matmul: # Updating the model M1='m1.out' MODNEW='gm5.out' modmod: # Calculating gridded values of the parameter Y0S MODEL='y0mod.out' MPAR=1 ICB=' ' VEL='y0m1.out' grid: # CAL='gb-ry.cal' GRD1='r0m1.out' GRD2='y0m1.out' GRD3='ry2.out' grdcal: CAL='div.cal' GRD1='r0m1.out' GRD2='ry2.out' GRD3='r0m.out' grdcal: CAL='div.cal' GRD1='y0m1.out' GRD2='ry2.out' GRD3='y0m.out' grdcal: # Plotting optimized parameters of Gaussian beams # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GRD='r0s.out' KOLUMN=4 GRD1='sigmar.out' KOLUMN1=5 GRD2='tauint.out' KOLUMN2=1 PTS='r0pts1.out' grdpts: GRD='y0s.out' KOLUMN=4 GRD1='sigmar.out' KOLUMN1=5 GRD2='tauint.out' KOLUMN2=1 PTS='y0pts1.out' grdpts: CREF=0.166667 VMIN=-99999999999. VMAX=0.5E-06 R=0. G=0. B=0. # Before smoothing and interpolation VREF=0. VCIRC= PTS='r0pts1.out' PS='r0s001.ps' ptsps: VREF=0.19E-08 VCIRC=0.6E-06 PTS='y0pts1.out' PS='y0s001.ps' ptsps: # After smoothing and interpolation VREF=0. VCIRC= GRD='r0m.out' PS='r0m.ps' grdps: VREF=0.19E-08 VCIRC=0.6E-06 GRD='y0m.out' PS='y0m.ps' grdps: