# Constructing smooth models P1 and P2 # ==================================== # Input files required # ~~~~~~~~~~~~~~~~~~~~ chk.pl: "data/p1/" "p1-vp.dat" chk.pl: "data/p1/" "p1-vpvs.dat" chk.pl: "data/p1/" "p2-vp.dat" chk.pl: "data/p1/" "p1-mod0.dat" chk.pl: "data/p1/" "p1-mod0s.dat" chk.pl: "data/p1/" "p2-mod0.dat" chk.pl: "model/" "sob22.dat" chk.pl: "forms/" "inv.cal" chk.pl: "forms/" "mul.cal" # Converting velocity to slowness # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAL='inv.cal' N1=474 N2=61 N3= GRD1='p1-vp.dat' GRD2='p1-sp.out' grdcal: N1= N2= N3= GRD1= GRD2= N1=330 N2=85 N3= GRD1='p2-vp.dat' GRD2='p2-sp.out' grdcal: N1= N2= N3= GRD1= GRD2= CAL='mul.cal' N1=474 N2=61 N3= GRD1='p1-vpvs.dat' GRD2='p1-sp.out' GRD3='p1-ss.out' grdcal: GRD1= GRD2= GRD3= N1= N2= N3= CAL='inv.cal' N1=474 N2=61 N3= GRD1='p1-ss.out' GRD2='p1-vs.out' grdcal: N1= N2= N3= GRD1= GRD2= # Plot of the gridded velocity data # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VREF=5.45 CREF=0.1666667 VCIRC=-1.5 HSIZE=24 YSIGN=-1 ROTATE=-90 VOFFSET=13 O1=0. D1=0.1 N1=474 O3=0. D3=0.1 N3=61 GRD='p1-vp.dat' PS='p1-vp.ps' grdps: VREF=3.14 CREF=0.096225 VCIRC=-0.866 GRD='p1-vs.out' PS='p1-vs.ps' grdps: VREF=5.45 CREF=0.1666667 VCIRC=-1.5 O1=0. D1=0.1 N1=330 O3=0. D3=0.1 N3=85 GRD='p2-vp.dat' PS='p2-vp.ps' grdps: N1= N2= N3= # Gridded velocity derivatives # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VREF= CREF= VCIRC= O1=0. D1=0.1 N1=474 O3=0. D3=0.1 N3=61 GRD='p1-vp.dat' GRD1='p1-vp1.out' GRD3='p1-vp3.out' GRD11='p1-vp11.out' GRD33='p1-vp33.out' grdfd: GRD='p1-vp1.out' PS='p1-vp1.ps' grdps: GRD='p1-vp3.out' PS='p1-vp3.ps' grdps: GRD='p1-vp11.out' PS='p1-vp11.ps' grdps: GRD='p1-vp33.out' PS='p1-vp33.ps' grdps: O1=0. D1=0.1 N1=330 O3=0. D3=0.1 N3=85 GRD='p2-vp.dat' GRD1='p2-vp1.out' GRD3='p2-vp3.out' GRD11='p2-vp11.out' GRD33='p2-vp33.out' grdfd: GRD='p2-vp1.out' PS='p2-vp1.ps' grdps: GRD='p2-vp3.out' PS='p2-vp3.ps' grdps: GRD='p2-vp11.out' PS='p2-vp11.ps' grdps: GRD='p2-vp33.out' PS='p2-vp33.ps' grdps: N1= N2= N3= # -------------------------------------------------------------------- # Constructing smooth velocity model P1 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # P-wave velocity model # Initial model MODEL='p1-mod0.dat' MODOUT='p1-mod.dat' NEGPAR=0 # Calculating matrices for inversion M1='m1.out' M2='m2.out' SOBOLEV='sob22.dat' MODSOB='modsobp.out' SOBW01=1 invsoft: MODSOB= SOBW01= GM1='gm1.out' GM2='gm2.out' GM3=' ' DM1='dm1.out' O1=0. D1=0.1 N1=474 O3=0. D3=0.1 N3=61 PTS= LIN= GRD='p1-sp.out' INDFUN=1 MPAR=1 POWERM=-1 ERRMUL=170. # SQRT(28914) invpts: GRD= INDFUN= MPAR= POWERM= ERRMUL= # Matrix operations MATIN1='dm1.out' MATOUT='dm2.out' MATFUN='inv' matfun: MATIN1='dm2.out' MATIN2='gm1.out' MATOUT='dm2gm1.out' SYMMETRY= MATT1= MATT2=1 matmul: MATIN1='gm1.out' MATIN2='dm2gm1.out' MATOUT='sm1.out' SYMMETRY='sym' MATT1= MATT2= matmul: MATIN1='sm1.out' MATIN2='modsobp.out' MATOUT='sm2.out' # Smoothing P-wave velocities by adding COEF2*modsobp.out COEF1= COEF2=0.001 matlin: MATIN1='sm2.out' MATOUT='sm3.out' matinv: MATIN1='dm2.out' MATIN2='gm2.out' MATOUT='gm3.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='gm1.out' MATIN2='gm3.out' MATOUT='gm4.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='sm3.out' MATIN2='gm4.out' MATOUT='gm5.out' SYMMETRY=' ' MATT1= MATT2= matmul: # Updating the model M1='m1.out' MODNEW='gm5.out' modmod: # # S-wave velocity model # Initial model MODEL='p1-mod0s.dat' MODOUT='p1-mods.dat' NEGPAR=0 # Calculating matrices for inversion M1='m1.out' M2='m2.out' SOBOLEV='sob22.dat' MODSOB='modsobs.out' SOBW02=1 invsoft: MODSOB= SOBW02= GM1='gm1.out' GM2='gm2.out' GM3=' ' DM1='dm1.out' O1=0. D1=0.1 N1=474 O3=0. D3=0.1 N3=61 PTS= LIN= GRD='p1-ss.out' INDFUN=1 MPAR=2 POWERM=-1 ERRMUL=170. # SQRT(28914) invpts: GRD= INDFUN= MPAR= POWERM= ERRMUL= # Matrix operations MATIN1='dm1.out' MATOUT='dm2.out' MATFUN='inv' matfun: MATIN1='dm2.out' MATIN2='gm1.out' MATOUT='dm2gm1.out' SYMMETRY= MATT1= MATT2=1 matmul: MATIN1='gm1.out' MATIN2='dm2gm1.out' MATOUT='sm1.out' SYMMETRY='sym' MATT1= MATT2= matmul: MATIN1='sm1.out' MATIN2='modsobs.out' MATOUT='sm2.out' # Smoothing S-wave velocities by adding COEF2*modsobs.out COEF1= COEF2=0.001 matlin: MATIN1='sm2.out' MATOUT='sm3.out' matinv: MATIN1='dm2.out' MATIN2='gm2.out' MATOUT='gm3.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='gm1.out' MATIN2='gm3.out' MATOUT='gm4.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='sm3.out' MATIN2='gm4.out' MATOUT='gm5.out' SYMMETRY=' ' MATT1= MATT2= matmul: # Updating the model M1='m1.out' MODNEW='gm5.out' modmod: # Estimation of the Lyapunov exponent for the model # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MODEL='p1-mod.dat' KOOR1=1 KOOR2=3 MODLED='p1-led.out' MODLEM='p1-lem.out' MODLEF='p1-lef.out' modle2d: # Plot of the gridded velocities in the model # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MODEL='p1-mod.dat' VREF=5.45 CREF=0.1666667 VCIRC=-1.5 HSIZE=24 YSIGN=-1 ROTATE=-90 VOFFSET=13 O1=0. D1=0.1 N1=474 O2= D2= N2= O3=0. D3=0.1 N3=61 MPAR=1 VEL='p1-vep.out' grid: GRD='p1-vep.out' PS='p1-vep.ps' grdps: MODEL='p1-mods.dat' VREF=3.14 CREF=0.096225 VCIRC=-0.866 MPAR=2 VEL='p1-ves.out' grid: GRD='p1-ves.out' PS='p1-ves.ps' grdps: # Gridded velocity derivatives # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MODEL='p1-mod.dat' VREF= CREF= VCIRC= O1=0. D1=0.1 N1=474 O2= D2= N2= O3=0. D3=0.1 N3=61 GRD='p1-vep.out' GRD1='p1-vep1.out' GRD3='p1-vep3.out' GRD11='p1-vep11.out' GRD33='p1-vep33.out' grdfd: GRD='p1-vep1.out' PS='p1-vep1.ps' grdps: GRD='p1-vep3.out' PS='p1-vep3.ps' grdps: GRD='p1-vep11.out' PS='p1-vep11.ps' grdps: GRD='p1-vep33.out' PS='p1-vep33.ps' grdps: # -------------------------------------------------------------------- # Constructing smooth velocity model P2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initial model, name of the resulting model MODEL='p2-mod0.dat' MODOUT='p2-mod.dat' NEGPAR=0 # Calculating matrices for inversion M1='m1.out' M2='m2.out' SOBOLEV='sob22.dat' MODSOB='modsobp.out' SOBW01=1 invsoft: MODSOB= SOBW01= GM1='gm1.out' GM2='gm2.out' GM3=' ' DM1='dm1.out' O1=0. D1=0.1 N1=330 O2= D2= N2= O3=0. D3=0.1 N3=85 PTS= LIN= GRD='p2-sp.out' INDFUN=1 MPAR=1 POWERM=-1 ERRMUL=170. # SQRT(28914) invpts: GRD= INDFUN= MPAR= POWERM= ERRMUL= # Matrix operations MATIN1='dm1.out' MATOUT='dm2.out' MATFUN='inv' matfun: MATIN1='dm2.out' MATIN2='gm1.out' MATOUT='dm2gm1.out' SYMMETRY= MATT1= MATT2=1 matmul: MATIN1='gm1.out' MATIN2='dm2gm1.out' MATOUT='sm1.out' SYMMETRY='sym' MATT1= MATT2= matmul: MATIN1='sm1.out' MATIN2='modsobp.out' MATOUT='sm2.out' # Smoothing P-wave velocities by adding COEF2*modsobp.out COEF1= COEF2=0.001 matlin: MATIN1='sm2.out' MATOUT='sm3.out' matinv: MATIN1='dm2.out' MATIN2='gm2.out' MATOUT='gm3.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='gm1.out' MATIN2='gm3.out' MATOUT='gm4.out' SYMMETRY=' ' MATT1= MATT2= matmul: MATIN1='sm3.out' MATIN2='gm4.out' MATOUT='gm5.out' SYMMETRY=' ' MATT1= MATT2= matmul: # Updating the model M1='m1.out' MODNEW='gm5.out' modmod: # Estimation of the Lyapunov exponent for the model # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MODEL='p2-mod.dat' KOOR1=1 KOOR2=3 MODLED='p2-led.out' MODLEM='p2-lem.out' MODLEF='p2-lef.out' modle2d: # Plot of the gridded velocities in the model # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VREF=5.45 CREF=0.1666667 VCIRC=-1.5 HSIZE=24 YSIGN=-1 ROTATE=-90 VOFFSET=13 O1=0. D1=0.1 N1=330 O2= D2= N2= O3=0. D3=0.1 N3=85 MPAR=1 VEL='p2-vep.out' grid: GRD='p2-vep.out' PS='p2-vep.ps' grdps: # Gridded velocity derivatives # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VREF= CREF= VCIRC= O1=0. D1=0.1 N1=330 O2= D2= N2= O3=0. D3=0.1 N3=85 GRD='p2-vep.out' GRD1='p2-vep1.out' GRD3='p2-vep3.out' GRD11='p2-vep11.out' GRD33='p2-vep33.out' grdfd: GRD='p2-vep1.out' PS='p2-vep1.ps' grdps: GRD='p2-vep3.out' PS='p2-vep3.ps' grdps: GRD='p2-vep11.out' PS='p2-vep11.ps' grdps: GRD='p2-vep33.out' PS='p2-vep33.ps' grdps: