Raising the order of multivariate approximation schemes using supplementary derivative data

Dirk Kraaijpoel¹ and Tristan van Leeuwen²

¹Climate and Seismology Department Royal Netherlands Meteorological Institute (KNMI)

²Faculty of Civil Engineering and Geosciences Delft University of Technology

SWLIM VII, Teplá Monastery, June 2010

Definitions Incorporating derivatives Examples Conclusion

Context Motivation and preview

• Functional approximation schemes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Definitions Incorporating derivatives Examples Conclusion

Context Motivation and preview

Context

- Functional approximation schemes
 - Interpolation
 - Quasi-interpolation
 - (Moving) least-squares approximation
 - ...

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Definitions Incorporating derivatives Examples Conclusion

Context Motivation and preview

Context

- Functional approximation schemes
 - Interpolation
 - Quasi-interpolation
 - (Moving) least-squares approximation
 - ...
- Minimal requirement: exact to some polynomial degree

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definitions Incorporating derivatives Examples Conclusion

Context Motivation and preview

Context

- Functional approximation schemes
 - Interpolation
 - Quasi-interpolation
 - (Moving) least-squares approximation
 - ...
- Minimal requirement: exact to some polynomial degree
- Omnipresent in computational sciences (and in observational / experimental sciences)

伺下 イヨト イヨト

Definitions Incorporating derivatives Examples Conclusion

Context Motivation and preview

Motivation and preview

• Suppose available: supplementary derivative data

/□ ▶ < 글 ▶ < 글

Definitions Incorporating derivatives Examples Conclusion

Context Motivation and preview

Motivation and preview

- Suppose available: supplementary derivative data
- How to utilize?

/□ ▶ < 글 ▶ < 글

Context Motivation and preview

Motivation and preview

- Suppose available: supplementary derivative data
- How to utilize?
- Full accommodation (fitting) often impossible or cumbersome

伺 ト イ ヨ ト イ ヨ

Context Motivation and preview

Motivation and preview

- Suppose available: supplementary derivative data
- How to utilize?
- Full accommodation (fitting) often impossible or cumbersome
- Can we find a way to improve exisiting approximation schemes?

Context Motivation and preview

Motivation and preview

- Suppose available: supplementary derivative data
- How to utilize?
- Full accommodation (fitting) often impossible or cumbersome
- Can we find a way to improve exisiting approximation schemes?
- Preview: Yes we can!

Using n supplementary orders of derivatives the approximation order can be raised by n.

伺 ト イ ヨ ト イ ヨ

Approximator Taylor expansion Dual Taylor expansion

Approximator

Definition: Approximator

An approximator of order m at $x \in X$ is a functional:

$$A_x^m: V \to \mathbb{R}$$

that satisfies

$$A_x^m[p] = p(x) \quad \forall \quad p \in P^m.$$

- 4 同 6 4 日 6 4 日 6

э

Approximator Taylor expansion Dual Taylor expansion

Approximator

Definition: Approximator

An approximator of order m at $x \in X$ is a functional:

$$A_x^m: V \to \mathbb{R}$$

that satisfies

$$A_x^m[p] = p(x) \quad \forall \quad p \in P^m.$$

• The approximator A_x^m reproduces al polynomials of maximum total degree *m* at *x*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Approximator Taylor expansion Dual Taylor expansion

Approximator

Definition: Approximator

An approximator of order m at $x \in X$ is a functional:

$$A_x^m:V o\mathbb{R}$$

that satisfies

$$A_x^m[p] = p(x) \quad \forall \quad p \in P^m.$$

- The approximator A_x^m reproduces al polynomials of maximum total degree *m* at *x*.
- Summarizes:
 - Sampling
 - Construction of approximant
 - Evaluation of approximant at x

Approximator Taylor expansion Dual Taylor expansion

Taylor expansion

Definition: Taylor expansion

n-th order truncated Taylor expansion of $f \in V$ around *x*:

$$\mathcal{T}_x^n: V \to P^n$$

$$\mathcal{T}_x^n[f] := \sum_{|\kappa| \le n} rac{1}{\kappa!} (.-x)^{\kappa} f^{(\kappa)}(x)$$

・ 一 ・ ・ ・ ・ ・ ・

Approximator Taylor expansion Dual Taylor expansion

Dual Taylor expansion

Definition: Dual Taylor expansion

n-th order truncated *dual Taylor expansion* of $f \in V$ around *x*:

$$\widetilde{\mathcal{T}}_{x}^{n}:V
ightarrow V$$
 $\widetilde{\mathcal{T}}_{x}^{n}[f]:=\sum_{|\kappa|\leq n}rac{1}{\kappa!}(x-.)^{\kappa}f^{(\kappa)}(.)$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Approximator Taylor expansion Dual Taylor expansion

Dual Taylor expansion

Definition: Dual Taylor expansion

n-th order truncated *dual Taylor expansion* of $f \in V$ around *x*:

$$\widetilde{\mathcal{T}}_{x}^{n}: V \to V$$
 $\widetilde{\mathcal{T}}_{x}^{n}[f] := \sum_{|\kappa| \le n} \frac{1}{\kappa!} (x - .)^{\kappa} f^{(\kappa)}(.)$

• Compare to:
$$\mathcal{T}_x^n[f] := \sum_{|\kappa| \le n} \frac{1}{\kappa!} (.-x)^{\kappa} f^{(\kappa)}(x)$$

- 4 同 6 4 日 6 4 日 6

Approximator Taylor expansion Dual Taylor expansion

Taylor expansion comparison

(Primal) Taylor expansion $\mathcal{T}_{x}^{n}[f] := \sum_{|\kappa| \le n} \frac{1}{\kappa!} (.-x)^{\kappa} f^{(\kappa)}(x)$

Approximator Taylor expansion Dual Taylor expansion

Taylor expansion comparison

Approximator Taylor expansion Dual Taylor expansion

Taylor expansion comparison

(Primal) Taylor expansion

Approximator Taylor expansion Dual Taylor expansion

Taylor expansion comparison

(Primal) Taylor expansion

Dual Taylor expansion

$$\mathcal{T}_x^n[f] := \sum_{|\kappa| \le n} \frac{1}{\kappa!} (.-x)^{\kappa} f^{(\kappa)}(x)$$

Dirk Kraaijpoel and Tristan van Leeuwen Raising the order of multivariate approximation schemes

Approximator Taylor expansion Dual Taylor expansion

Taylor expansion comparison

(Primal) Taylor expansion

Dual Taylor expansion

$$\mathcal{T}_x^n[f] := \sum_{|\kappa| \le n} \frac{1}{\kappa!} (.-x)^{\kappa} f^{(\kappa)}(x)$$

Dirk Kraaijpoel and Tristan van Leeuwen Raising the order of multivariate approximation schemes

Introduction Definitions Examples Conclusion

Dual Taylor expansion

Taylor expansion comparison

(Primal) Taylor expansion

Approximator Taylor expansion Dual Taylor expansion

Taylor expansion comparison

(Primal) Taylor expansion

Approximator Taylor expansion Dual Taylor expansion

Taylor expansion comparison

(Primal) Taylor expansion

Approximator Taylor expansion Dual Taylor expansion

Taylor expansion comparison

(Primal) Taylor expansion

Suggestion Simple example Reduced dual Taylor expansion Main theorem

• Original approximation scheme:

$$\hat{f}(x) = A_x^m[f]$$

Dirk Kraaijpoel and Tristan van Leeuwen Raising the order of multivariate approximation schemes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Suggestion Simple example Reduced dual Taylor expansion Main theorem

• Original approximation scheme:

$$\hat{f}(x) = A_x^m[f]$$

• Enhanced approximation scheme:

$$\tilde{f}(x) = A_x^m[\widetilde{\mathcal{T}}_x^n[f]]$$

(日) (同) (三) (三)

э

Suggestion Simple example Reduced dual Taylor expansion Main theorem

• Original approximation scheme:

$$\hat{f}(x) = A_x^m[f]$$

• Enhanced approximation scheme:

$$\tilde{f}(x) = A_x^m[\widetilde{\mathcal{T}}_x^n[f]]$$

• How well does this work?

- 4 同 2 4 日 2 4 日 2

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Simple example: 1D, two samples

Dirk Kraaijpoel and Tristan van Leeuwen Raising the orde

Raising the order of multivariate approximation schemes

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Simple example: 1D, two samples

Raising the order of multivariate approximation schemes

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Simple example: 1D, two samples

Dirk Kraaijpoel and Tristan van Leeuwen Raising the order of multivariate approximation schemes

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Simple example: 1D, two samples

Dirk Kraaijpoel and Tristan van Leeuwen

Raising the order of multivariate approximation schemes

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Simple example: 1D, two samples

Dirk Kraaijpoel and Tristan van Leeuwen

Raising the order of multivariate approximation schemes

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Simple example: 1D, two samples

Dirk Kraaijpoel and Tristan van Leeuwen Raising the order of multivariate approximation schemes

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Simple example: 1D, two samples

Dirk Kraaijpoel and Tristan van Leeuwen Raising the order of multivariate approximation schemes

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Simple example: 1D, two samples

Dirk Kraaijpoel and Tristan van Leeuwen

Raising the order of multivariate approximation schemes
Suggestion Simple example Reduced dual Taylor expansion Main theorem

Simple example: 1D, two samples

• Solution: replace

$$\widetilde{\mathcal{T}}_x^1[f] = f(.) + (x - .)f^{(1)}(.)$$

by

$$\widetilde{\mathcal{D}}_{x}^{11}[f] = f(.) + \frac{1}{2}(x - .)f^{(1)}(.)$$

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Simple example: 1D, two samples

Solution: replace

$$\widetilde{\mathcal{T}}_x^1[f] = f(.) + (x - .)f^{(1)}(.)$$

by

$$\widetilde{\mathcal{D}}_{x}^{11}[f] = f(.) + \frac{1}{2}(x - .)f^{(1)}(.)$$

• Modifying coefficient raises approximation order

- 4 同 2 4 日 2 4 日 2

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Simple example: 1D, two samples

Solution: replace

$$\widetilde{\mathcal{T}}_x^1[f] = f(.) + (x - .)f^{(1)}(.)$$

by

$$\widetilde{\mathcal{D}}_{x}^{11}[f] = f(.) + \frac{1}{2}(x - .)f^{(1)}(.)$$

- Modifying coefficient raises approximation order
- Is this possible more generally?

・ 同 ト ・ ヨ ト ・ ヨ

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Reduced dual Taylor expansion

Definition: Reduced dual Taylor expansion

n-th order reduced dual Taylor expansion of the m-th kind:

 $\widetilde{\mathcal{D}}_{x}^{mn}: V \to V$

$$\widetilde{\mathcal{D}}_{x}^{mn}[f] := \sum_{|\kappa| \leq n} \frac{1}{\kappa!} C_{|\kappa|}^{mn}(x-.)^{\kappa} f^{(\kappa)}(.)$$

< 日 > < 同 > < 三 > < 三 >

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Reduced dual Taylor expansion

Definition: Reduced dual Taylor expansion

n-th order reduced dual Taylor expansion of the m-th kind:

 $\widetilde{\mathcal{D}}_{x}^{mn}: V \to V$

$$\widetilde{\mathcal{D}}_{x}^{mn}[f] := \sum_{|\kappa| \le n} \frac{1}{\kappa!} C_{|\kappa|}^{mn}(x-.)^{\kappa} f^{(\kappa)}(.)$$

• Compare to:
$$\widetilde{\mathcal{T}}_x^n[f] := \sum_{|\kappa| \le n} \frac{1}{\kappa!} (x-.)^{\kappa} f^{(\kappa)}(.)$$

< 日 > < 同 > < 三 > < 三 >

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Reduced dual Taylor expansion

$$\mathcal{C}^{mn}_{|\kappa|} := {m+n \choose m}^{-1} {m+n-|\kappa| \choose m}$$

Coefficients "reduced": $C_{|\kappa|}^{mn} \leq 1$

• $C_k^{11} = \{1, \frac{1}{2}\}$ • $C_k^{12} = \{1, \frac{2}{3}, \frac{1}{3}\}$ • $C_k^{13} = \{1, \frac{3}{4}, \frac{2}{4}, \frac{1}{4}\}$ • $C_k^{22} = \{1, \frac{3}{6}, \frac{1}{6}\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Reduced dual Taylor expansions

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Reduced dual Taylor expansions

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Reduced dual Taylor expansions

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Reduced dual Taylor expansions

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Reduced dual Taylor expansions

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Reduced dual Taylor expansions

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Reduced dual Taylor expansions

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Reduced dual Taylor expansions

Dirk Kraaijpoel and Tristan van Leeuwen Raising the order of multivariate approximation schemes

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Main theorem

Theorem

The combination of reduced dual Taylor expansion \hat{D}_x^{mn} and approximator A_x^m yields an effective approximation order of m + n:

$$A^m_x[\widetilde{\mathcal{D}}^{mn}_x[p]] = p(x) \quad \forall \quad p \in P^{m+n}$$

- 4 同 6 4 日 6 4 日 6

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Main theorem

Theorem

The combination of reduced dual Taylor expansion \tilde{D}_{x}^{mn} and approximator A_{x}^{m} yields an effective approximation order of m + n:

$$A^m_x[\widetilde{\mathcal{D}}^{mn}_x[p]] = p(x) \quad \forall \quad p \in P^{m+n}$$

• Compare to: $A^m_x[p] = p(x) \quad \forall \quad p \in P^m$

< 日 > < 同 > < 三 > < 三 >

3

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Main theorem

Theorem

The combination of reduced dual Taylor expansion \tilde{D}_{x}^{mn} and approximator A_{x}^{m} yields an effective approximation order of m + n:

$$A^m_x[\widetilde{\mathcal{D}}^{mn}_x[p]] = p(x) \quad \forall \quad p \in P^{m+n}$$

- Compare to: $A^m_x[p] = p(x) \quad \forall \quad p \in P^m$
- Proof: several binomial identities

- 4 同 6 4 日 6 4 日 6

Suggestion Simple example Reduced dual Taylor expansion Main theorem

Main theorem

Theorem

The combination of reduced dual Taylor expansion \tilde{D}_{x}^{mn} and approximator A_{x}^{m} yields an effective approximation order of m + n:

$$A^m_x[\widetilde{\mathcal{D}}^{mn}_x[p]] = p(x) \quad \forall \quad p \in P^{m+n}$$

- Compare to: $A^m_x[p] = p(x) \quad \forall \quad p \in P^m$
- Proof: several binomial identities
- General procedure for arbitrary A_x^m !

(人間) ト く ヨ ト く ヨ ト

Suggestion Simple example Reduced dual Taylor expansion Main theorem

.

э

Error expression

$$f(x) - A_x^m[\widetilde{\mathcal{D}}_x^{mn}[f]] = A_x^m \left[\int_0^1 \frac{(-t)^m (1-t)^n}{(m+n)!} \frac{d^{m+n+1}}{dt^{m+n+1}} f(.+t(x-.)) dt \right]$$

Dirk Kraaijpoel and Tristan van Leeuwen Raising the order of multivariate approximation schemes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linear interpolation Moving least-squares approximation Ray tracing

Linear interpolation

•
$$f(x, y) = \cos(2\pi x) + x\sin(2\pi y) + y^2 - x$$

< ロ > < 同 > < 回 > < 回 >

Linear interpolation Moving least-squares approximation Ray tracing

Linear interpolation

•
$$f(x,y) = \cos(2\pi x) + x\sin(2\pi y) + y^2 - x$$

• sampled on N random locations

< ロ > < 同 > < 回 > < 回 >

Linear interpolation Moving least-squares approximation Ray tracing

Linear interpolation

•
$$f(x, y) = \cos(2\pi x) + x\sin(2\pi y) + y^2 - x$$

- sampled on N random locations
- Linear interpolation on Delaunay triangulation: $\tilde{f}(x, y) = \sum_{k=0}^{N-1} w_k(x, y) f_k$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Linear interpolation Moving least-squares approximation Ray tracing

Linear interpolation

•
$$f(x,y) = \cos(2\pi x) + x\sin(2\pi y) + y^2 - x$$

- sampled on N random locations
- Linear interpolation on Delaunay triangulation: $\tilde{f}(x, y) = \sum_{k=0}^{N-1} w_k(x, y) f_k$
- Procedure: $f_k \to \widetilde{\mathcal{D}}^{1,n}[f](x_k, y_k)$

伺 ト イヨト イヨト

Linear interpolation Moving least-squares approximation Ray tracing

Linear interpolation

•
$$f(x, y) = \cos(2\pi x) + x\sin(2\pi y) + y^2 - x$$

- sampled on N random locations
- Linear interpolation on Delaunay triangulation: $\tilde{f}(x, y) = \sum_{k=0}^{N-1} w_k(x, y) f_k$
- Procedure: $f_k \to \widetilde{\mathcal{D}}^{1,n}[f](x_k, y_k)$
- Expected convergence rate $\mathcal{O}(N^{-(n+2)/2})$

伺 ト イ ヨ ト イ ヨ

Linear interpolation Moving least-squares approximation Ray tracing

<ロ> <同> <同> < 回> < 回>

Linear interpolation Moving least-squares approximation Ray tracing

<ロ> <同> <同> < 回> < 回>

æ

Linear interpolation Moving least-squares approximation Ray tracing

<ロ> <同> <同> < 回> < 回>

æ

Linear interpolation Moving least-squares approximation Ray tracing

<ロ> <同> <同> < 回> < 回>

æ

Linear interpolation Moving least-squares approximation Ray tracing

э

э

Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

•
$$f(x, y) = \cos(2\pi x) + x\sin(2\pi y) + y^2 - x$$

・ 同 ト ・ ヨ ト ・ ヨ

Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

- $f(x, y) = \cos(2\pi x) + x\sin(2\pi y) + y^2 x$
- sampled on N random locations

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

•
$$f(x,y) = \cos(2\pi x) + x\sin(2\pi y) + y^2 - x$$

• sampled on N random locations

• MLS approximation:

$$\tilde{f}(x, y) = \underset{p \in P^m}{\operatorname{argmin}} \left[\sum_{k=0}^{N-1} \phi^2(r_k) (p(x_k, y_k) - f_k)^2 \right] (x, y)$$

・ 同 ト ・ ヨ ト ・ ヨ

Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

•
$$f(x,y) = \cos(2\pi x) + x\sin(2\pi y) + y^2 - x$$

sampled on N random locations

• MLS approximation: $\tilde{f}(x, y) = \underset{p \in P^{m}}{\operatorname{argmin}} \left[\sum_{k=0}^{N-1} \phi^{2}(r_{k})(p(x_{k}, y_{k}) - f_{k})^{2} \right] (x, y)$

•
$$\phi(r) = \exp[-Nr^2].$$

Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

•
$$f(x, y) = \cos(2\pi x) + x\sin(2\pi y) + y^2 - x$$

- sampled on N random locations
- MLS approximation: $\tilde{f}(x, y) = \underset{p \in P^m}{\operatorname{argmin}} \left[\sum_{k=0}^{N-1} \phi^2(r_k) (p(x_k, y_k) - f_k)^2 \right] (x, y)$

•
$$\phi(r) = \exp[-Nr^2]$$
.

• Procedure: $f_k \to \widetilde{\mathcal{D}}^{m,n}[f](x_k, y_k)$

伺 ト イ ヨ ト イ ヨ ト

Linear interpolation Moving least-squares approximation Ray tracing

- 7

- 同 ト - ヨ ト - - ヨ ト

Moving least-squares approximation

•
$$f(x, y) = \cos(2\pi x) + x\sin(2\pi y) + y^2 - x$$

- sampled on N random locations
- MLS approximation: $\tilde{f}(x,y) = \operatorname{argmin} \left[\sum_{k=1}^{N-1} \phi^2(x_k) (x_k) \right]$

$$f(x,y) = \underset{p \in P^m}{\operatorname{argmin}} \left[\sum_{k=0}^{N-1} \phi^2(r_k) (p(x_k, y_k) - f_k)^2 \right] (x,y)$$

•
$$\phi(r) = \exp[-Nr^2].$$

- Procedure: $f_k \to \widetilde{\mathcal{D}}^{m,n}[f](x_k, y_k)$
- Expected convergence rate $\mathcal{O}(N^{-(m+n+1)/2})$

Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

0.2 0.4 ×~ 0.6 0.8 1^L 0.2 0.4 0.8 0.6 х₁

sampling N = 75
Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

m = 1, n = 0

Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

m = 1, n = 1

Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

m = 1, n = 2

Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

m = 2, n = 0

Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

m = 2, n = 1

Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

m = 2, n = 2

Linear interpolation Moving least-squares approximation Ray tracing

Moving least-squares approximation

Raising the order of multivariate approximation schemes

Linear interpolation Moving least-squares approximation Ray tracing

- Gaussian low velocity anomaly
- Triplication
- Sparse ray field

Linear interpolation Moving least-squares approximation Ray tracing

Ray tracing

<ロ> (日) (日) (日) (日) (日)

Linear interpolation Moving least-squares approximation Ray tracing

Ray tracing

<ロ> (日) (日) (日) (日) (日)

э

• Introduced Reduced dual Taylor expansion

・ 同 ト ・ ヨ ト ・ ヨ

- Introduced Reduced dual Taylor expansion
- Used to raise the order of large class of approximation schemes using supplementary derivative data

伺 ト イ ヨ ト イ ヨ

- Introduced Reduced dual Taylor expansion
- Used to raise the order of large class of approximation schemes using supplementary derivative data
- The procedure is very easy to implement, even for 'black box' codes

- Introduced Reduced dual Taylor expansion
- Used to raise the order of large class of approximation schemes using supplementary derivative data
- The procedure is very easy to implement, even for 'black box' codes
- Expected to be useful in a wide range of applications

Acknowledgements

- Netherlands Research Centre for Integrated Solid Earth Science (ISES)
- Foundation for Fundamental Research on Matter (FOM)

伺 ト イ ヨ ト イ ヨ

Acknowledgements

- Netherlands Research Centre for Integrated Solid Earth Science (ISES)
- Foundation for Fundamental Research on Matter (FOM)
- You. Thanks for listening!

伺下 イヨト イヨ